Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2316500121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442157

RESUMO

Evaluating the ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells is crucial, for instance, to predict the efficiency of cell therapy in personalized medicine. However, the destruction of a tumor by CTLs involves CTL migration in the extra-tumoral environment, accumulation on the tumor, antigen recognition, and cooperation in killing the cancer cells. Therefore, identifying the limiting steps in this complex process requires spatio-temporal measurements of different cellular events over long periods. Here, we use a cancer-on-a-chip platform to evaluate the impact of adenomatous polyposis coli (APC) mutation on CTL migration and cytotoxicity against 3D tumor spheroids. The APC mutated CTLs are found to have a reduced ability to destroy tumor spheroids compared with control cells, even though APC mutants migrate in the extra-tumoral space and accumulate on the spheroids as efficiently as control cells. Once in contact with the tumor however, mutated CTLs display reduced engagement with the cancer cells, as measured by a metric that distinguishes different modes of CTL migration. Realigning the CTL trajectories around localized killing cascades reveals that all CTLs transition to high engagement in the 2 h preceding the cascades, which confirms that the low engagement is the cause of reduced cytotoxicity. Beyond the study of APC mutations, this platform offers a robust way to compare cytotoxic cell efficiency of even closely related cell types, by relying on a multiscale cytometry approach to disentangle complex interactions and to identify the steps that limit the tumor destruction.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias , Humanos , Neoplasias/genética , Linfócitos T Citotóxicos , Mutação , Dispositivos Lab-On-A-Chip
2.
Biofabrication ; 16(3)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447213

RESUMO

Recent advances in the field of mechanobiology have led to the development of methods to characterise single-cell or monolayer mechanical properties and link them to their functional behaviour. However, there remains a strong need to establish this link for three-dimensional (3D) multicellular aggregates, which better mimic tissue function. Here we present a platform to actuate and observe many such aggregates within one deformable micro-device. The platform consists of a single polydimethylsiloxane piece cast on a 3D-printed mould and bonded to a glass slide or coverslip. It consists of a chamber containing cell spheroids, which is adjacent to air cavities that are fluidically independent. Controlling the air pressure in these air cavities leads to a vertical displacement of the chamber's ceiling. The device can be used in static or dynamic modes over time scales of seconds to hours, with displacement amplitudes from a fewµm to several tens of microns. Further, we show how the compression protocols can be used to obtain measurements of stiffness heterogeneities within individual co-culture spheroids, by comparing image correlations of spheroids at different levels of compression with finite element simulations. The labelling of the cells and their cytoskeleton is combined with image correlation methods to relate the structure of the co-culture spheroid with its mechanical properties at different locations. The device is compatible with various microscopy techniques, including confocal microscopy, which can be used to observe the displacements and rearrangements of single cells and neighbourhoods within the aggregate. The complete experimental and imaging platform can now be used to provide multi-scale measurements that link single-cell behaviour with the global mechanical response of the aggregates.


Assuntos
Técnicas de Cultura de Células , Esferoides Celulares , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura
3.
Dev Cell ; 58(21): 2217-2234.e8, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37852253

RESUMO

Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.


Assuntos
Coração Entrecruzado , Humanos , Animais , Camundongos , Morfogênese/genética , Coração , Ventrículos do Coração , Células-Tronco
4.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662317

RESUMO

During embryogenesis, yolk-sac and intra-embryonic-derived hematopoietic progenitors, comprising the precursors of adult hematopoietic stem cells, converge into the fetal liver. With a new staining strategy, we defined all non-hematopoietic components of the fetal liver and found that hepatoblasts are the major producers of hematopoietic growth factors. We identified mesothelial cells, a novel component of the stromal compartment, producing Kit ligand, a major hematopoietic cytokine. A high-definition imaging dataset analyzed using a deep-learning based pipeline allowed the unambiguous identification of hematopoietic and stromal populations, and enabled determining a neighboring network composition, at the single cell resolution. Throughout active hematopoiesis, progenitors preferentially associate with hepatoblasts, but not with stellate or endothelial cells. We found that, unlike yolk sac-derived progenitors, intra-embryonic progenitors respond to a chemokine gradient created by CXCL12-producing stellate cells. These results revealed that FL hematopoiesis is a spatiotemporal dynamic process, defined by an environment characterized by low cytokine concentrations.

5.
STAR Protoc ; 4(4): 102573, 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37721864

RESUMO

The field of stem cell-based embryo-like models is rapidly evolving, providing in vitro models of in utero stages of mammalian development. Here, we detail steps to first establish adherent spheroids composed of three cell types from mouse embryonic stem cells solely treated with a chemical inhibitor of SUMOylation. We then describe procedures for generating highly reproducible gastruloids from these dissociated spheroid cells, as well as embryo-like structures comprising anterior neural and trunk somite-like regions using an optimized microfluidics platform. For complete details on the use and execution of this protocol, please refer to Cossec et al. (2023).1.

6.
iScience ; 26(5): 106651, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168549

RESUMO

Culturing and screening cells in microfluidics, particularly in three-dimensional formats, has the potential to impact diverse areas from fundamental biology to cancer precision medicine. Here, we use a platform based on anchored droplets for drug screening. The response of spheroids of Ewing sarcoma (EwS) A673 cells to simultaneous or sequential combinations of etoposide and cisplatin was evaluated. This was done by culturing spheroids of EwS cells inside 500 nL droplets then merging them with secondary droplets containing fluorescent-barcoded drugs at different concentrations. Differences in EwS spheroid growth and viability were measured by microscopy. After drug exposure such measurements enabled estimation of their IC50 values, which were in agreement with values obtained in standard multiwell plates. Then, synergistic drug combination was evaluated. Sequential combination treatment of EwS with etoposide applied 24 h before cisplatin resulted in amplified synergistic effect. As such, droplet-based microfluidics offers the modularity required for evaluation of drug combinations.

7.
Cell Rep ; 42(4): 112380, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37061916

RESUMO

Recent advances in synthetic embryology have opened new avenues for understanding the complex events controlling mammalian peri-implantation development. Here, we show that mouse embryonic stem cells (ESCs) solely exposed to chemical inhibition of SUMOylation generate embryo-like structures comprising anterior neural and trunk-associated regions. HypoSUMOylation-instructed ESCs give rise to spheroids that self-organize into gastrulating structures containing cell types spatially and functionally related to embryonic and extraembryonic compartments. Alternatively, spheroids cultured in a droplet microfluidic device form elongated structures that undergo axial organization reminiscent of natural embryo morphogenesis. Single-cell transcriptomics reveals various cellular lineages, including properly positioned anterior neuronal cell types and paraxial mesoderm segmented into somite-like structures. Transient SUMOylation suppression gradually increases DNA methylation genome wide and repressive mark deposition at Nanog. Interestingly, cell-to-cell variations in SUMOylation levels occur during early embryogenesis. Our approach provides a proof of principle for potentially powerful strategies to explore early embryogenesis by targeting chromatin roadblocks of cell fate change.


Assuntos
Embrião de Mamíferos , Sumoilação , Animais , Camundongos , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Desenvolvimento Embrionário , Diferenciação Celular/fisiologia , Mamíferos
8.
Phys Rev Lett ; 130(6): 064001, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827557

RESUMO

The capture of a soft spherical particle in a rectangular slit leads to a nonmonotonic pressure-flow rate relation at low Reynolds number. Simulations reveal that the flow induced deformations of the trapped particle focus the streamlines and pressure drop to a small region. This increases the resistance to flow by several orders of magnitude as the driving pressure is increased. As a result, two regimes are observed in experiments and simulations: a flow-dominated regime for small particle deformations, where flow rate increases with pressure, and an elastic-dominated regime in which solid deformations block the flow.

9.
BMC Biol ; 20(1): 269, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464673

RESUMO

BACKGROUND: Double-strand break repair (DSBR) is a highly regulated process involving dozens of proteins acting in a defined order to repair a DNA lesion that is fatal for any living cell. Model organisms such as Saccharomyces cerevisiae have been used to study the mechanisms underlying DSBR, including factors influencing its efficiency such as the presence of distinct combinations of microsatellites and endonucleases, mainly by bulk analysis of millions of cells undergoing repair of a broken chromosome. Here, we use a microfluidic device to demonstrate in yeast that DSBR may be studied at a single-cell level in a time-resolved manner, on a large number of independent lineages undergoing repair. RESULTS: We used engineered S. cerevisiae cells in which GFP is expressed following the successful repair of a DSB induced by Cas9 or Cpf1 endonucleases, and different genetic backgrounds were screened to detect key events leading to the DSBR efficiency. Per condition, the progenies of 80-150 individual cells were analyzed over 24 h. The observed DSBR dynamics, which revealed heterogeneity of individual cell fates and their contributions to global repair efficacy, was confronted with a coupled differential equation model to obtain repair process rates. Good agreement was found between the mathematical model and experimental results at different scales, and quantitative comparisons of the different experimental conditions with image analysis of cell shape enabled the identification of three types of DSB repair events previously not recognized: high-efficacy error-free, low-efficacy error-free, and low-efficacy error-prone repair. CONCLUSIONS: Our analysis paves the way to a significant advance in understanding the complex molecular mechanism of DSB repair, with potential implications beyond yeast cell biology. This multiscale and multidisciplinary approach more generally allows unique insights into the relation between in vivo microscopic processes within each cell and their impact on the population dynamics, which were inaccessible by previous approaches using molecular genetics tools alone.


Assuntos
Microfluídica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Reparo do DNA , Diferenciação Celular , Endonucleases
10.
BMC Biol ; 20(1): 178, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953853

RESUMO

BACKGROUND: Microscopy techniques and image segmentation algorithms have improved dramatically this decade, leading to an ever increasing amount of biological images and a greater reliance on imaging to investigate biological questions. This has created a need for methods to extract the relevant information on the behaviors of cells and their interactions, while reducing the amount of computing power required to organize this information. RESULTS: This task can be performed by using a network representation in which the cells and their properties are encoded in the nodes, while the neighborhood interactions are encoded by the links. Here, we introduce Griottes, an open-source tool to build the "network twin" of 2D and 3D tissues from segmented microscopy images. We show how the library can provide a wide range of biologically relevant metrics on individual cells and their neighborhoods, with the objective of providing multi-scale biological insights. The library's capacities are demonstrated on different image and data types. CONCLUSIONS: This library is provided as an open-source tool that can be integrated into common image analysis workflows to increase their capacities.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
11.
Nat Commun ; 13(1): 3111, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661707

RESUMO

Cytotoxic T cells are important components of natural anti-tumor immunity and are harnessed in tumor immunotherapies. Immune responses to tumors and immune therapy outcomes largely vary among individuals, but very few studies examine the contribution of intrinsic behavior of the T cells to this heterogeneity. Here we show the development of a microfluidic-based in vitro method to track the outcome of antigen-specific T cell activity on many individual cancer spheroids simultaneously at high spatiotemporal resolution, which we call Multiscale Immuno-Oncology on-Chip System (MIOCS). By combining parallel measurements of T cell behaviors and tumor fates with probabilistic modeling, we establish that the first recruited T cells initiate a positive feedback loop to accelerate further recruitment to the spheroid. We also provide evidence that cooperation between T cells on the spheroid during the killing phase facilitates tumor destruction. Thus, we propose that both T cell accumulation and killing function rely on collective behaviors rather than simply reflecting the sum of individual T cell activities, and the possibility to track many replicates of immune cell-tumor interactions with the level of detail our system provides may contribute to our understanding of immune response heterogeneity.


Assuntos
Microfluídica , Neoplasias , Humanos , Imunoterapia , Neoplasias/patologia , Linfócitos T Citotóxicos , Microambiente Tumoral
12.
Chem Rev ; 122(7): 7061-7096, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35179881

RESUMO

Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas de Cultura de Células , Microfluídica/métodos , Tecnologia
13.
Bio Protoc ; 11(19): e4177, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34722824

RESUMO

The formation of spheroids with mesenchymal stem/stromal cells (MSCs), mesenchymal bodies (MBs), is usually performed using bioreactors or conventional well plates. While these methods promote the formation of a large number of spheroids, they provide limited control over their structure or over the regulation of their environment. It has therefore been hard to elucidate the mechanisms orchestrating the structural organization and the induction of the trophic functions of MBs until now. We have recently demonstrated an integrated droplet-based microfluidic platform for the high-density formation and culture of MBs, as well as for the quantitative characterization of the structural and functional organization of cells within them. The protocol starts with a suspension of a few hundred MSCs encapsulated within microfluidic droplets held in capillary traps. After droplet immobilization, MSCs start clustering and form densely packed spherical aggregates that display a tight size distribution. Quantitative imaging is used to provide a robust demonstration that human MSCs self-organize in a hierarchical manner, by taking advantage of the good fit between the microfluidic chip and conventional microscopy techniques. Moreover, the structural organization within the MBs is found to correlate with the induction of osteo-endocrine functions (i.e., COX-2 and VEGF-A expression). Therefore, the present platform provides a unique method to link the structural organization in MBs to their functional properties. Graphic abstract: Droplet microfluidic platform for integrated formation, culture, and characterization of mesenchymal bodies (MBs). The device is equipped with a droplet production area (flow focusing) and a culture chamber that enables the culture of 270 MBs in parallel. A layer-by-layer analysis revealed a hierarchical developmental organization within MBs.

14.
Soft Matter ; 17(44): 10042-10052, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34709287

RESUMO

Foams are inherently unstable objects, that age and disappear over time. The main cause of foam aging is Ostwald ripening: smaller air bubbles within the foam empty their gas content into larger ones. One strategy to counter Ostwald ripening consists in creating armored bubbles, where solid particles adsorbed at the air/liquid interface prevent bubbles from shrinking below a given size. Here, we study the efficiency of coating air bubbles with fat crystals to prevent bubble dissolution. A monoglyceride, monostearin, is directly crystallized at the air/oil interface. Experiments on single bubbles in a microfluidic device show that the presence of monostearin fat crystals slows down dissolution, with an efficiency that depends on the crystal size. Bubble ripening in the presence of crystals exhibits intermittent dissolution dynamics, with phases of arrest, when crystals jam at the interface, followed by phases of dissolution, when monostearin crystals are ejected from the interface. In the end, crystals do not confer enough mechanical strength to the bubbles to prevent them from fully dissolving.

15.
Langmuir ; 37(24): 7442-7448, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110835

RESUMO

Water/oil/water (w/o/w) double emulsions (DEs) are multicompartment structures which can be used in many technological applications and in fundamental studies as models of cell like microreactors or templates for other materials. Herein, we study the flow dynamics of water/oil/water double emulsions generated in a microfluidic device and stabilized with the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We show that by varying the concentration of lipids in the oil phase (chloroform) or by modulating the viscosity of the aqueous continuous phase, the double emulsions under flow exhibit a rich dynamic behavior. An initial deformation of the double emulsions is followed by tube extraction at the rear end, relative to the flow direction, resulting in pinch off at the tube extremity by which small aqueous compartments are released. These compartments are phospholipid vesicles as deduced from fluorescence experiments. The overall process can thus be of help to shed light on the mechanical aspects of phenomena such as the budding and fusion in cell membranes.


Assuntos
Microfluídica , Fosfolipídeos , Emulsões , Viscosidade , Água
16.
Small ; 16(49): e2002303, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185938

RESUMO

While many single-cell approaches have been developed to measure secretions from anchorage-independent cells, these protocols cannot be applied to adherent cells, especially when these cells require to be cultured in 3D formats. Here, a platform to measure secretions from individual spheroids of human mesenchymal stem cells, cultured within microfluidic droplets is introduced. The platform allows to quantify the secretions from hundreds of individual spheroids in each device, by using a secondary droplet to bring functionalized micro-beads in proximity to each spheroid. Vascular endothelial growth factor (VEGF-A) is measured on and a broad distribution of secretion levels within the population of spheroids is observed. The intra-cellular level of VEGF-A on each spheroid, measured through immuno-staining, correlates well with the extra-cellular measurement, indicating that the heterogeneities observed at the spheroid level result from variations at the intra-cellular level. Further, the molecular accumulation within the droplets is modeled and it is found that physical confinement is crucial for measurements of protein secretions. The model predicts that the time to achieve a measurement scales with droplet volume. These first measurements of secretions from individual spheroids provide several new biological and technological insights.


Assuntos
Microfluídica , Esferoides Celulares , Citocinas , Humanos , Fator A de Crescimento do Endotélio Vascular
17.
Cell Rep ; 31(8): 107670, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460010

RESUMO

As three-dimensional cell culture formats gain in popularity, there emerges a need for tools that produce vast amounts of data on individual cells within the spheroids or organoids. Here, we present a microfluidic platform that provides access to such data by parallelizing the manipulation of individual spheroids within anchored droplets. Different conditions can be applied in a single device by triggering the merging of new droplets with the spheroid-containing drops. This allows cell-cell interactions to be initiated for building microtissues, studying stem cells' self-organization, or observing antagonistic interactions. It also allows the spheroids' physical or chemical environment to be modulated, as we show by applying a drug over a large range of concentrations in a single parallelized experiment. This convergence of microfluidics and image acquisition leads to a data-driven approach that allows the heterogeneity of 3D culture behavior to be addressed across the scales, bridging single-cell measurements with population measurements.


Assuntos
Microfluídica/métodos , Esferoides Celulares/metabolismo , Engenharia Tecidual/métodos , Humanos , Imageamento Tridimensional
18.
Sci Adv ; 6(10): eaaw7853, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181333

RESUMO

Organoids that recapitulate the functional hallmarks of anatomic structures comprise cell populations able to self-organize cohesively in 3D. However, the rules underlying organoid formation in vitro remain poorly understood because a correlative analysis of individual cell fate and spatial organization has been challenging. Here, we use a novel microfluidics platform to investigate the mechanisms determining the formation of organoids by human mesenchymal stromal cells that recapitulate the early steps of condensation initiating bone repair in vivo. We find that heterogeneous mesenchymal stromal cells self-organize in 3D in a developmentally hierarchical manner. We demonstrate a link between structural organization and local regulation of specific molecular signaling pathways such as NF-κB and actin polymerization, which modulate osteo-endocrine functions. This study emphasizes the importance of resolving spatial heterogeneities within cellular aggregates to link organization and functional properties, enabling a better understanding of the mechanisms controlling organoid formation, relevant to organogenesis and tissue repair.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Técnicas Analíticas Microfluídicas , Organoides/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais/genética , Engenharia Tecidual/métodos , Actinas/genética , Actinas/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Regeneração Óssea , Osso e Ossos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Organogênese , Organoides/citologia , Osteoblastos/citologia , Polimerização , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Lab Chip ; 20(2): 236-243, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31746881

RESUMO

The detection of toxic gases is becoming an important element in tackling increased air pollution. This has led to the development of gas sensors based on porous solid materials, which are produced using sol-gel chemistry and functionalized to change their optical qualities when in contact with the gas. In this context it is interesting to explore how microfluidics can be used to miniaturize these sensors, to improve their sensitivity and dynamic range, or to multiplex many gas measurements on a single chip. In this article we show how the sol-gel process can be implemented using anchored droplet microfluidics. The sensor material is partitioned into droplets while in the sol phase and maintained using capillary anchors. The ability to hold the droplets in place first allows us to study the sol-gel process. We use an original rheology method, which consists of observing the flows within stationary droplets that are submitted to an external flow, to measure the gelation time of the droplets. These measurements show a gelation time that decreases from 50 minutes to below 10 minutes as the temperature increases from 20 to 50 °C. We also measure the shrinkage of individual gel beads after gelation and find that this syneresis process is nearly finished after about 12 hours, leading to a final bead size that is 50% smaller than the initial droplet. Finally, we show that the beads can be functionalized and used to detect the presence of formaldehyde. These results first provide a new way to observe the physics of the sol-gel process in a well-controlled and quantitative fashion. Moreover they highlight how the coupling of microfluidics and sol-gel chemistry can be used to detect toxic gases, in view of answering the challenges surrounding gas detection in real-world settings.

20.
Phys Rev Lett ; 123(23): 238006, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868506

RESUMO

We quantify the spatiotemporal transformation of a monodisperse and well-ordered monolayer of bubbles, as they undergo Ostwald ripening, by tracking the size polydispersity of the bubbles and local ordering of the foam. After nuclei of disorder appear at random locations, the transition takes place through two successive phases: first, the disordered regions grow while the value of polydispersity increases slowly, then the polydispersity grows rapidly once the disordered zones begin to merge together. The transition is captured by a modified logistic model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...